Contoh Soal Uji Hipotesis Satu Pihak - Sebelumnya, kalian telah mempelajari ukuran pemusatan dan keragaman dalam statistika. Nah, dalam topik ini kalian akan mempelajari topik lain, yaitu mengenai uji hipotesis satu pihak. Untuk itu, mari kita dengan penuh semangat bersama-sama membahas lebih jauh mengenai topik ini.
1. HIPOTESIS STATISTIK
2. DAERAH PENOLAKAN
3. TARAF NYATA
4. STATISTIK UJI
5. UJI HIPOTESIS SATU PIHAK
Hipotesis alternatif θ > θ₀ memiliki daerah kritik seluruhnya di ekor kanan sebarannya. Sedangkan daerah kritik dari hipotesis alternatif θ < θ₀ terletak pada ekor kanan sebarannya. H₀ selalu dinyatakan dalam bentuk kesamaan untuk menyatakan suatu nilai tunggal.
Meski H₀ dituliskan dengan tanda sama dengan, namun nilainya tidak hanya semata-mata tepat 12 gram. Akan tetapi nilai H₀ mencakup semua nilai yang tidak dicakup oleh H₁, yaitu tepat 12 gram atau kurang dari 12 gram.
Sehingga apabila menerima H₀, tidak boleh diartikan bahwa μ tepat bernilai 12 gram.
Menerima H₀ harus kita artikan bahwa kita tidak punya cukup bukti untuk menerima H₁.
Untuk menentukan daerah kritiknya, coba perhatikan hipotesis alternatifnya. Karena uji ini merupakan uji hipotesis satu pihak, maka lambang “lebih dari” menunjukkan bahwa daerah kritiknya berada di ekor kanan sebaran statistik X.
6. LANGKAH-LANGKAH UJI HIPOTESIS SATU PIHAK
7. UJI – t SATU SAMPEL
b. Bentuk uji hipotesis satu pihak untuk pihak kiri
8. LANGKAH-LANGKAH UJI t SATU SAMPEL UNTUK UJI HIPOTESIS SATU PIHAK
b. Pilih hipotesis alternatif yang sesuai, yaitu:
c. Tentukan taraf nyata
d. Tentukan nilai tabelnya, yaitu:
Keterangan:
n = banyaknya sampel
(n − 1) = derajat bebas
e. Hitung nilai statistik uji berdasarkan data sampelnya, yaitu
Keterangan:
f. Daerah kritik:
maka H₀ ditolak jika
maka H₀ ditolak jika
g. Keputusan: Jika nilai statistik ujinya jatuh pada daerah kritik, maka H₀ ditolak, sebaliknya jika nilai statistik ujinya di luar daerah kritik maka H₀ tidak ditolak.
9. CARA MEMBACA TABEL UJI t
yang bersesuaian pada tabel uji t berikut ini.
Contoh:
Contoh:
e. Nilai statistik uji berdasarkan data sampelnya, yaitu
f. Daerah kritik:
g. Keputusan:
Tentang:
MIA kelas 11
1. HIPOTESIS STATISTIK
Pengujian hipotesis statistik merupakan salah satu bagian terpenting dalam statistika. Hal ini karena dalam kehidupan nyata kita seringkali diharuskan untuk membuat suatu keputusan atau kesimpulan mengenai suatu pemasalahan tertentu dalam populasi tertentu pula. Keputusan tersebut tentu tidak boleh diambil secara sembarangan. Sebelum mengambil suatu keputusan, terlebih dahulu kita harus membuat suatu dugaan mengenai masalah tersebut terhadap suatu populasi, kemudian menganalisa bukti-bukti yang ada. Dugaan mengenai satu atau lebih populasi dalam statistika disebut hipotesis statistik.
Keputusan untuk menolak atau menerima suatu hipotesis statistik tergantung pada konsistensi bukti-bukti yang kita peroleh. Suatu hipotesis statistik akan ditolak jika bukti-bukti yang diperoleh tidak mendukung hipotesis tersebut. Sebaliknya, jika bukti-bukti yang diperoleh secara konsisten mendukung hipotesis tersebut, maka hal ini akan membawa pada penerimaan hipotesis tersebut. Akan tetapi perlu dipahami bahwa penerimaan suatu hipotesis statistik tidak selalu berarti bahwa hipotesis tersebut benar. Karena menerima suatu hipotesis statistik sejatinya bermakna bahwa kita tidak memiliki cukup bukti untuk menolaknya.
Hipotesis yang dirumuskan dengan tujuan untuk ditolak diistilahkan dengan hipotesis nol dan dilambangkan dengan H₀ . Sedangkan hipotesis alternatifnya dilambangkan dengan H₁.
Contoh:
Akan diuji suatu pernyataan : “Suatu vitamin merk A lebih unggul dari vitamin yang telah beredar jika 75% orang yang mengonsumsinya mengalami peningkatan daya tahan tubuh”.
Tentukan rumusan hipotesisnya.
Tentukan rumusan hipotesisnya.
Penyelesaian:
Pernyataan tersebut dinyatakan sebagai H₁ , sedangkan lawan dari pernyataan tersebut dinyatakan sebagai H₀.
Sehingga, uji hipotesisnya dapat dituliskan sebagai berikut:
2. DAERAH PENOLAKAN
Daerah penolakan adalah daerah atau interval dimana H₀ ditolak.
Daerah penolakan disebut juga dengan daerah kritik.
Daerah penolakan disebut juga dengan daerah kritik.
3. TARAF NYATA
Taraf nyata atau adalah peluang terjadinya kesalahan yang berupa penerimaan H₀ yang salah.
Taraf nyata dapat pula dikatakan sebagai ukuran daerah kritik.
Apabila H₀ ditolak pada taraf nyata 0,05 maka uji tersebut dikatakan nyata.
Sedangkan jika H₀ ditolak pada taraf nyata 0,01 maka uji tersebut dikatakan sangat nyata.
Taraf nyata dapat pula dikatakan sebagai ukuran daerah kritik.
Apabila H₀ ditolak pada taraf nyata 0,05 maka uji tersebut dikatakan nyata.
Sedangkan jika H₀ ditolak pada taraf nyata 0,01 maka uji tersebut dikatakan sangat nyata.
4. STATISTIK UJI
Statistik uji atau disebut juga statistik penguji adalah variabel random yang digunakan untuk mengambil keputusan apakah H₀ ditolak atau tidak ditolak.
H₀ akan ditolak jika nilai statistik ujinya masuk ke dalam daerah kritiknya.
H₀ akan ditolak jika nilai statistik ujinya masuk ke dalam daerah kritiknya.
5. UJI HIPOTESIS SATU PIHAK
Uji hipotesis satu pihak merupakan uji hipotesis statistik yang hipotesis altenatifnya bersifat satu pihak saja. Uji hipotesis satu pihak dapat dirumuskan sebagai:
atau
Hipotesis alternatif θ > θ₀ memiliki daerah kritik seluruhnya di ekor kanan sebarannya. Sedangkan daerah kritik dari hipotesis alternatif θ < θ₀ terletak pada ekor kanan sebarannya. H₀ selalu dinyatakan dalam bentuk kesamaan untuk menyatakan suatu nilai tunggal.
Contoh:
Sebuah perusahaan minuman instan menyatakan bahwa kadar gula rata-rata minuman hasil produksinya tidak lebih dari 12 gram per kemasan.
Tentukan hipotesis nol dan alternatif yang akan digunakan untuk menguji pernyataan perusahaan tersebut.
Tentukan pula daerah kritiknya.
Tentukan hipotesis nol dan alternatif yang akan digunakan untuk menguji pernyataan perusahaan tersebut.
Tentukan pula daerah kritiknya.
Penyelesaian:
Pernyataan perusahaan minuman instan tersebut harus ditolak hanya jika μ > 12 gram dan harus diterima jika μ ≤ 12. Ingat bahwa H₀ harus menyatakan nilai tunggal, sehingga kita akan menguji:
Meski H₀ dituliskan dengan tanda sama dengan, namun nilainya tidak hanya semata-mata tepat 12 gram. Akan tetapi nilai H₀ mencakup semua nilai yang tidak dicakup oleh H₁, yaitu tepat 12 gram atau kurang dari 12 gram.
Sehingga apabila menerima H₀, tidak boleh diartikan bahwa μ tepat bernilai 12 gram.
Menerima H₀ harus kita artikan bahwa kita tidak punya cukup bukti untuk menerima H₁.
Untuk menentukan daerah kritiknya, coba perhatikan hipotesis alternatifnya. Karena uji ini merupakan uji hipotesis satu pihak, maka lambang “lebih dari” menunjukkan bahwa daerah kritiknya berada di ekor kanan sebaran statistik X.
6. LANGKAH-LANGKAH UJI HIPOTESIS SATU PIHAK
Berikut ini adalah langkah-langkah yang dapat dilakukan untuk melakukan uji hipotesis satu pihak mengenai parameter populasiθ:
a. Nyatakan hipotesis nol nya, yaitu H₀ : θ = θ₀
b. Pilih hipotesis alternatif yang sesuai, yaitu H₁ : θ > θ₀ atau H₁ : θ <θ₀
c. Tentukan taraf nyata α
d. Pilih statistik uji yang sesuai, kemudian tentukan daerah kritiknya.
e. Hitung nilai statistik uji berdasarkan data sampelnya.
f. Keputusan: Jika nilai statistik ujinya jatuh pada daerah kritik, maka H₀ ditolak, sebaliknya jika nilai statistik ujinya di luar daerah kritik maka H₀ tidak ditolak.
7. UJI – t SATU SAMPEL
Uji t satu sampel digunakan untuk menentukan apakah nilai rata-rata sampel berbeda dengan nilai rata-rata acuan.
Bentuk hipotesis satu pihak untuk uji t satu sampel adalah sebagai berikut:
a. Bentuk uji hipotesis satu pihak untuk pihak kanan
b. Bentuk uji hipotesis satu pihak untuk pihak kiri
8. LANGKAH-LANGKAH UJI t SATU SAMPEL UNTUK UJI HIPOTESIS SATU PIHAK
a. Nyatakan hipotesis nol nya, yaitu:
b. Pilih hipotesis alternatif yang sesuai, yaitu:
c. Tentukan taraf nyata
d. Tentukan nilai tabelnya, yaitu:
Keterangan:
n = banyaknya sampel
(n − 1) = derajat bebas
e. Hitung nilai statistik uji berdasarkan data sampelnya, yaitu
Keterangan:
f. Daerah kritik:
1. Jika hipotesis alternatifnya
maka H₀ ditolak jika
2. Jika hipotesis alternatifnya
maka H₀ ditolak jika
g. Keputusan: Jika nilai statistik ujinya jatuh pada daerah kritik, maka H₀ ditolak, sebaliknya jika nilai statistik ujinya di luar daerah kritik maka H₀ tidak ditolak.
9. CARA MEMBACA TABEL UJI t
Cara menemukan nilai tabel pada tabel uji t adalah dengan memilih derajat bebas (n −1) dan
yang bersesuaian pada tabel uji t berikut ini.
Contoh:
Misal banyaknya sampel adalah 12 dan taraf signifikansinya adalah 0,05, maka nilai tabelnya yaitu
Contoh:
Waktu rata-rata yang diperlukan oleh siswa dalam mengerjakan satu set soal adalah 45 menit dengan simpangan baku 10 menit. Suatu set soal baru sedang dibuat. Untuk itu, dipilih secara acak 15 orang siswa untuk mengerjakan set soal baru tersebut. Ternyata, siswa-siswa tersebut memerlukan waktu rata-rata 40 menit dengan simpangan baku 12 menit untuk mengerjakan set soal baru tersebut. Dengan mengasumsikan bahwa populasi waktu yang diperlukan adalah normal dan menggunakan taraf signifikansi 0,05, ujilah bahwa nilai tengah populasinya sekarang kurang dari 45.
Jawab:
a. Hipotesis nol nya, yaitu: H₀ : μ = 45 menit
b. Hipotesis alternatif yang sesuai, yaitu: H₁ : μ < 45 menit
c. Taraf nyata
d. Nilai tabelnya, yaitu:
e. Nilai statistik uji berdasarkan data sampelnya, yaitu
f. Daerah kritik:
Diperoleh bahwa
yaitu –1,6137 > –1,761
g. Keputusan:
Karena nilai statistik ujinya tidak jatuh pada daerah kritik, maka H₀ tidak ditolak.
Berarti, fakta tidak cukup kuat untuk mendukung penyataan bahwa nilai tengah populasinya sekarang kurang dari 45 menit.
Berarti, fakta tidak cukup kuat untuk mendukung penyataan bahwa nilai tengah populasinya sekarang kurang dari 45 menit.
S1
Hipotesis statistik merupakan dugaan mengenai ….
S2
Penerimaan suatu hipotesis statistik merupakan akibat dari ….
S3
Dalam suatu uji hipotesis, H₀ akan ditolak jika nilai statistik ujinya ….
S4
Berikut ini merupakan bentuk rumusan hipotesis satu pihak, kecuali …
S5
Seorang manager perusahaan ingin menguji apakah karyawan senior lebih disiplin dari karyawan junior. Jika ia hendak menguji dengan menggunakan uji pihak kanan, maka rumusan hipotesis yang tepat digunakan adalah …
S6
Perhatikan pernyataan berikut:
Seorang koki restoran ingin meneliti persentase konsumen yang merasa kurang puas dengan masakannya. Jika konsumen yang merasa kurang puas lebih dari 10%, maka ia akan memperbaiki kualitas masakannya.
Rumusan hipotesis satu pihak untuk menguji pernyataan tersebut adalah ….
Rumusan hipotesis satu pihak untuk menguji pernyataan tersebut adalah ….
S7
Sebuah produsen makanan ringan menyatakan bahwa kadar bahan penyedap rata-rata makanan ringan hasil produksinya tidak melebihi 3 gram.
Rumusan hipotesis dan wilayah kritik yang tepat untuk menguji pernyataan tersebut adalah …
Rumusan hipotesis dan wilayah kritik yang tepat untuk menguji pernyataan tersebut adalah …
S8
Sebuah toko kue selama satu minggu berturut-turut setiap harinya berhasil menjual kue sebanyak 65 buah, 70 buah, 74 buah, 50 buah, 62 buah, 55 buah, dan 68 buah. Jika kita ingin menguji apakah rata-rata penjualan kue per harinya lebih dari 60 buah, maka rumusan hipotesis yang dapat digunakan adalah …
S9
Tahun lalu, tarif parkir sepeda motor rata-rata di kota A adalah Rp1.500,00. Dengan menggunakan taraf nyata 0,01, seorang peneliti ingin mengetahui apakah tarif parkir rata-rata tahun ini masih Rp1.500,00. Untuk itu, dipilih secara acak 10 orang responden dari 10 lokasi parkir yang berbeda di kota A.
Diperoleh bahwa tarif parkir rata-ratanya adalah Rp2.000,00 dengan simpangan baku Rp500,00.
Nilai tabel yang sesuai untuk soal di atas adalah ….
Diperoleh bahwa tarif parkir rata-ratanya adalah Rp2.000,00 dengan simpangan baku Rp500,00.
Nilai tabel yang sesuai untuk soal di atas adalah ….
S10
Seorang pemilik toko beras ingin mengetahui apakah rata-rata penjualan beras di tokonya dapat dikatakan melebihi 60 kg per harinya. Untuk itu, ia mengambil contoh penjualan selama seminggu terakhir dan diperoleh rata-rata penjualan 63 kg per hari dengan simpangan baku 6,5 kg.
Jika dipakai α = 5%, maka nilai statistik uji dan kesimpulan yang diperoleh adalah ….
Jika dipakai α = 5%, maka nilai statistik uji dan kesimpulan yang diperoleh adalah ….
Tidak ada komentar:
Posting Komentar